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Abstract

The paper presents a study of stability of rapidly evaporating droplets and liquid shells occurring in
the process of explosive boiling, where, in addition to surface evaporation, a vapor bubble grows within
a highly superheated liquid droplet immersed in a liquid or gas medium. To get better insight into the
problem, two simpler but related problems are studied before the full stability problem is treated. First,
the stability of an evaporating, highly superheated liquid droplet is analyzed, in order to estimate the
in¯uence of the outer evaporation from the droplet surface. The linear stability of the process at the
®nal stages of explosive boiling, when the droplet forms an expanding liquid shell, is studied next.
Finally, the general case of explosive boiling stability is considered. It is shown that the process is
unstable, as indeed has been found in existing experiments. 7 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Explosive boiling is a process of rapid phase transition from liquid to vapor, which occurs
when the liquid is highly superheated (Avedisian, 1985; Shepherd and Sturtevant, 1982; Reid,
1983). The process is characterized by very high evaporation rates, formation of an internal
bubble and deviation from thermodynamic equilibrium. It usually occurs so fast (100±200 ms at
atmospheric pressure) that it resembles an explosion.
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Explosive boiling occurs when liquid droplets are suddenly and massively heated, say by
immersion in a hot medium, by laser heating (Chitavnis, 1987) or by passage through a shock
wave (Frost, 1989). It is also obtained by sudden decompression, as in liquids ejected in space
(Fuchs and Legge, 1979; Miller, 1985).

One of the most interesting features of explosive boiling is the very high evaporation rate
attainable in this process. One cause of such strong evaporation is thought to be the signi®cant
increase in the area of the evaporation surface caused by instability of the bubble interface
(Avedisian, 1985; Shepherd and Sturtevant, 1982; McCann et al., 1989). This instability, ®rst
observed by Shepherd and Sturtevant (1982), manifests itself as wrinkling and roughening of
the vapor bubble surface followed by its distortion. The increased area of the evaporation
surface provides the necessary heat transfer to support explosive boiling.

Recently Shusser and Weihs (1999) proposed a mathematical model describing growth of an
internal vapor bubble produced by homogeneous nucleation within a liquid droplet during
explosive boiling. The predictions of the model were con®rmed by existing experimental results
for explosive boiling of superheated droplets (Shepherd and Sturtevant, 1982; McCann et al.,
1989). The instability of explosive vapor bubble growth was not, however, considered by
Shusser and Weihs (1999). Proper understanding of this instability may throw light on the
physics of explosive boiling.

Explosive boiling instability is related to the instability of laminar ¯ames discovered by
Landau (1944) and investigated for spherical ¯ames by Istratov and Librovich (1969). It is also
connected to the instability of evaporation surfaces (Miller, 1973; Palmer, 1976; Prosperetti and
Plesset, 1984) and to the problem of spherical bubble stability (Birkho�, 1954, 1956; Plesset,
1954; Plesset and Mitchell, 1956). The unperturbed state is time-dependent (growth of a
spherical vapor bubble within a liquid droplet) and hence normal-mode analysis is not
appropriate.

Instabilities developing on the outer surface of the liquid droplet can be capillary instability
if the droplet is situated in a liquid medium or evaporating surface instability if the medium is
gaseous. To analyze the interaction of the process on both interfaces one must consider two
types of perturbations which we shall call ``symmetric'' and ``antisymmetric'' in analogy with
the stability of liquid ®lms (Squire, 1953) or annular liquid jets (Meyer and Weihs, 1987).

The physical mechanism responsible for this instability is not fully understood at present.
Sturtevant and Shepherd (1982) used the Landau theory to estimate stability limits and growth
rates for explosive boiling. Recently Lee and Merte (1998) showed that approximating the
evaporation surface as a plane and using instantaneous information for a growing spherical
vapor bubble, one can reasonably predict the occurrence of instability and its wavelength.
Nevertheless, an understanding of rapid evaporation instability for the spherical case has not
been achieved yet (Lee and Merte, 1998).

Our aim is to investigate the linear stability of explosive boiling of a liquid droplet in liquid
or gas medium. We concentrate on hydrodynamic aspects of the problem but consider
spherical geometry and include both interfaces into the analysis. We start by studying two
simpler but related problems before treating the general case.
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The plan of the present paper is as follows. In the next section, the stability of evaporation
of a highly superheated liquid droplet is studied. Section 3 deals with the problem of linear
stability of a thin expanding liquid spherical shell. Then we proceed to analyze the general case
of explosive boiling stability in Section 4.

2. Stability of a highly superheated evaporating liquid droplet

2.1. Statement of the problem

Take a spherical, highly superheated liquid droplet surrounded by vapor of the same
composition. The droplet evaporates, creating vapor ¯ow in the host medium, as shown in
Fig. 1. Here no internal vapor bubbles are produced. Our purpose is to study the linear
stability of this process.
The stability of evaporation has been investigated only for evaporation from plane surfaces

(Miller, 1973; Palmer, 1976; Prosperetti and Plesset, 1984; Higuera, 1987). Moreover, most of
the work has been devoted to studying marginal stability, which may be inappropriate for
investigation of the stability of evaporation (Prosperetti and Plesset, 1984, p. 1590). Therefore,
as a ®rst stage in the study of the stability of an explosively evaporating droplet, we make
several simplifying assumptions based on the observations of high superheating and very
strong evaporation. These assumptions are consistent with explosive boiling.
We assume that:

1. The vapor and the liquid are inviscid, incompressible ¯uids.
2. Evaporation rate in the base ¯ow is constant.
3. The ¯ow perturbations do not in¯uence the evaporation rate.
4. The ¯ow ®eld is spherically symmetric.

Shepherd and Sturtevant (1982) observed, for evaporation into the interior of a bubble, that
typical velocities for explosive boiling are about 15 m/s. At such velocities, density variations
due to pressure variations are small, as the Mach number is much less than one. In the absence
of quantitative data for outer evaporation from the surface of a droplet boiling explosively, we
assume that this remains true in our case. In¯uence of temperature variations on density
variations was estimated by Prosperetti and Plesset (1984) and found negligible. They have also
demonstrated that viscosity can be neglected.
Experimentally, it was found for explosive evaporation into a bubble, that evaporation rate

remains approximately constant (Shepherd and Sturtevant, 1982). Due to high superheating,
the evaporation rate value is close to its kinetic theory limit (Shusser and Weihs, 1999). Under
these conditions the in¯uence of pressure and temperature changes on the evaporation rate is
relatively limited (Ytrehus, 1997, Fig. 12). Hence, we consider the problem of steady
evaporation and assume that the evaporation rate in the base ¯ow is constant. The same
approach was chosen by Prosperetti and Plesset (1984) in their analysis of stability of a plane
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evaporating surface. Calculating the temperature ®eld inside the droplet for the base ¯ow (see
Appendix A) one can demonstrate that this approximation is indeed reasonable.
Estimation of the droplet surface temperature perturbation (see Appendix A) shows that the

temperature perturbation is much smaller than any change in the surface temperature itself and
therefore it can be neglected. It should be emphasized that though the evaporation rate (mass
of evaporated liquid from unit area of the interface per unit time) remains approximately
constant, the overall evaporating mass ¯ux can increase signi®cantly due to increase in the area
of the interface.
The assumption of spherical symmetry is discussed by Avedisian (1985) and Shusser and

Weihs (1999).

2.2. The unperturbed (base) ¯ow

Let u�, p� and uÿ, pÿ be the velocity and the pressure in the vapor and liquid phase,
respectively. p0 is the pressure far from the droplet, J is the evaporation rate (per unit surface
area), R � R�t� is the droplet radius where R0 � R�0� and r, rv are the densities of the liquid

Fig. 1. A highly superheated evaporating droplet.
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and the vapor, respectively; a � rv=r �0 < a < 1�: Furthermore s is the surface tension; r is the
radial coordinate in the spherical coordinates �r, y, j�; t is the time.
For spherical incompressible ¯ow with constant evaporation rate to satisfy the conservation

of mass, the droplet radius must decrease linearly with time

R � R0 ÿ J

r
t �1�

From the conservation of mass and momentum at the interface

rv

�
u�jr�R ÿ

dR

dt

�
� J �2�

r

�
uÿjr�R ÿ

dR

dt

�
� J �3�

ÿr
�
uÿjr�R ÿ

dR

dt

�
uÿjr�R � rv

�
u�jr�R ÿ

dR

dt

�
u�jr�R � pÿjr�R ÿ p�jr�R ÿ

2s
R

�4�

one obtains that the velocity inside the droplet vanishes and the pressure there is uniform but
time-dependent.

uÿ � 0 �5�

pÿ � p0 ÿ J 2

2r
�1ÿ a�

�
3ÿ 1

a

�
� 2s

R�t� �6�

while the velocity and the pressure in the vapor are given by

u� � J

r

�
1

a
ÿ 1

�
R2

r2
�7�

p� � p0 ÿ J 2

2r
�1ÿ a�R

r

�
4�

�
1

a
ÿ 1

�
R3

r3

�
�8�

2.3. Boundary conditions in the perturbed ¯ow

The droplet is now assumed to have the following surface shape

r � R�t� � e�y;j;t� �9�
where e� R (see insert in Fig. 1).
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We denote the components of perturbation velocity in spherical coordinates and
perturbation of pressure v 0rÿ , v

0
yÿ , v

0
jÿ , p

0
ÿ in the droplet and v 0r� , v

0
y� , v

0
j� , p

0
� in the vapor. At

the interface they satisfy boundary conditions which are the conservation of mass, the
constancy of the evaporation rate and the conservation of the three components of
momentum.
Istratov and Librovich (1969) solved a similar (but inverse) problem of spherical ¯ame

stability. Following their solution we obtain that at the unperturbed surface of the droplet r �
R�t�

vr 0 ÿ � @e
@t

�10�

vr 0 � � e
du�
dr
� @e
@t

�11�

v 0yÿ � v 0y� �
1

R

@e
@y

u� �12�

v 0jÿ � v 0j� �
1

R sin y
@e
@j

u� �13�

p 0ÿ � p 0� � e
dp�
dr
� s

�
Lÿ 2

R

�
�14�

where L is the perturbed droplet surface curvature.

2.4. Perturbed ¯ow

For inviscid ¯uid, the ¯ow inside the perturbed droplet remains irrotational. De®ning the
perturbation potential F 0ÿ and choosing an appropriate solution of the Laplace equation

F 0ÿ � f�t�rnYm
n �y;j � �15�

where Ym
n are spherical harmonics, one obtains the components of perturbation velocity and

perturbation pressure

v 0rÿ � nfrnÿ1Ym
n ; v 0yÿ � frnÿ1

@Ym
n

@y
; v 0jÿ � frnÿ1

1

sin y
@Ym

n

@j
�16�

p 0ÿ � ÿr
df

dt
rnYm

n �17�

The ¯ow in the vapor phase will be rotational due to the creation of vorticity at the
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distorted surface of the perturbed droplet. It should be stressed that it is not possible to use the
Laplace equation for pressure perturbations in the vapor phase (Landau, 1944; Istratov and
Librovich, 1969) because there is a vapor ¯ow in the unperturbed case. It turns out that our
problem (outer evaporation from the droplet surface) is much more di�cult than the problem
of Istratov and Librovich (1969) (expansion of spherical ¯ame) or the problem of evaporation
into an inner bubble.
Due to the velocity perturbation v 0� being solenoidal, we can divide it into toroidal and

poloidal parts T, S (Chandrasekhar, 1961, p. 225)

v 0� � T � S �18�
where

Tr � 0; Ty � T�r�
r sin y

@Ym
n

@j
; Tj � ÿT�r�

r

@Ym
n

@y
�19�

Sr � n�n� 1�
r2

S�r�Ym
n ; Sy � 1

r

@S

@r

@Ym
n

@y
; Sj � 1

rsin y
@S

@r

@Ym
n

@j
�20�

The vorticity OOO can also be divided

OOO � ~T � ~S �21�
where the functions ~T, ~S satisfy (Chandrasekhar, 1961, p. 226)

~T � n�n� 1�
r2

Sÿ d2S

dr2
�22�

~S � T �23�
The radial component of vorticity is

Or � n�n� 1�
r2

T�r�Ym
n �24�

We now show that in the linear approximation Or vanishes.
Indeed, linearizing the vorticity equation for inviscid ¯ow we obtain for Or

@Or

@t
� u�

@Or

@r
ÿ Or

du�
dr
� 0 �25�

and therefore Or is not identically zero only if it is created at the perturbed interface (9). On
the other hand, the vorticity is of order O�e� and therefore, neglecting second-order terms, one
can calculate it at the surface of the unperturbed droplet r � R: Then using the de®nition of
vorticity and boundary conditions (12) and (13) one obtains that the radial component of
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vorticity is continuous at the interface. It is zero inside the droplet, so that it must vanish in
the vapor too.
We have therefore obtained that Or is a second-order quantity and hence negligible in the

investigation of linear stability. Thus, we put

T�r� � 0 �26�
That is, in the vapor phase the ¯ow-®eld has only a poloidal part and the vorticity ®eld has
only a toroidal part. This is in accordance with Prosperetti (1977, p. 344) who stated that in
perturbed spherical ¯ows a poloidal part of the vorticity cannot be generated if it vanishes at
the initial moment.
Returning to the calculation of the velocity ®eld within the vapor, relation (22) is now an

ordinary di�erential equation, with general solution

S � C�t�
rn
�D�t�rn�1 � Sp �27�

where Sp is the particular solution.
We assume that when r41 the vorticity tends to zero su�ciently rapidly so that Sp40

too. Then

D�t� � 0 �28�
We are interested in the behavior of S�r; t� near the droplet surface. Therefore we approximate
~T�r; t� by its value at the droplet surface, which we call F�t�

~T�r; t�1 ~T�R�t�; t� � F�t� �29�
Substituting Eq. (29) into Eq. (22) and using the resultant ordinary di�erential equation to
calculate Sp, we obtain the following approximate solution for S:

S � C�t�
rn
� F�t�r2

n�n� 1� ÿ 2
�30�

The solution (30) always exists, as we are interested in the perturbation modes for which nr2:
The fact that it does not satisfy the condition at in®nity is not relevant as we use it only near
the droplet surface.
From Eqs. (18), (20), (26) and (30) one obtains that the surface values of the perturbed

velocity ®eld in the vapor are

v 0r� �
�
n�n� 1�C

Rn�2 � n�n� 1�F
n�n� 1� ÿ 2

�
Ym

n �31�

v 0y� �
�
ÿ nC

Rn�2 �
2F

n�n� 1� ÿ 2

�
@Ym

n

@y
�32�
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v 0j� �
�
ÿ nC

Rn�2 �
2F

n�n� 1� ÿ 2

�
1

sin y
@Ym

n

@j
�33�

The pressure perturbation is calculated from the linearized Euler equation. The result for r � R
is

p 0�
rv
�
"

n

Rn�1
dC

dt
ÿ 2R

n�n� 1� ÿ 2

dF

dt
ÿ J

r

�
1

a
ÿ 1

��
n�n� 1�C

Rn�2 � 2F

n�n� 1� ÿ 2

�#
Ym

n �34�

In addition, the droplet surface distortion is

e � a1�t�Ym
n �y j�; n > 2 �35�

2.5. Stability analysis

Substituting Eqs. (16), (17), (31)±(34) into the boundary conditions (10)±(14) and denoting

a2�t� � f�t�Rnÿ1; a3�t� � C�t�
Rn�2 ; a4�t� � F�t�

n�n� 1� ÿ 2
�36�

we obtain the following system of equations for the functions a1, a2, a3, a4

na2 � da1
dt

�37�

n�n� 1��a3 � a4� ÿ 2

R

J

r

�
1

a
ÿ 1

�
a1 � da1

dt
�38�

a2 � ÿna3 � 2a4 � J

r

�
1

a
ÿ 1

�
a1
R

�39�

ÿ
�
R

da2
dt
� �n-1�J

r
a2

�

� an

 
R

da3
dt
ÿ J

r

�
1� n� 1

a

�
a3

!
ÿ 2a

 
R

da4
dt
� J

r

�
1

a
ÿ 1

�
a4

!
� 2J 2

r2

�
1

a
ÿ 1

�
a1
R

� s�nÿ 1��n� 2�
rR2

a1 �40�

from which the equation for the amplitude of the droplet surface perturbation a1�t� is
obtained, as
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R

n
�1ÿ a�d

2a1
dt2
� �nÿ 1�

n

�
3ÿ 1

n� 1
� a

�
J

r
da1
dt

�
 
ÿ
�
1

a
ÿ 1

��nÿ 1�2
n� 1

� sr�nÿ 1��n� 2�
J 2R

!
J 2

r2

a1
R
� 0

�41�

Taking the unperturbed droplet radius R as an independent variable we re-write Eq. (41) as

R
d2a1
dR2
ÿ b

da1
dR
�
�
ÿ g

R
� d

R2

�
a1 � 0 �42�

where

b � �nÿ 1�
1ÿ a

�
3ÿ 1

n� 1
� a;

�
g � 1

a
n�nÿ 1�2
n� 1

; d � sr
J 2

n�nÿ 1��n� 2�
1ÿ a

�43�

Choosing

x � 2

�����
d
R

r
; y � xb�1a1 �44�

we retrieve a Bessel equation

d2y

dx 2
� 1

x

dy

dx
�
�
1ÿ

ÿ
4g� �b� 1�2

�
x 2

�
y � 0 �45�

Therefore the general solution of Eq. (42) is

a1 � R
b�1
2

"
C1 Jv

 
2

�����
d
R

r !
� C2Yv

 
2

�����
d
R

r !#
�46�

where

n �
���������������������������
4g� �b� 1�2

q
�47�

Hence when R40

a1
R

0R
2bÿ1
4 �48�

One sees that b > 8=3 when nr2 and 0 < a < 1 and therefore a1=R40 when R40, i.e.,
droplet surface perturbations tend to zero faster than the droplet radius. The solution is thus
stable.
A question arises about the validity of this analysis, due to the assumption of e

R � 1 (Eq.
(9)) which is only justi®ed a posteriori here.
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Fig. 2. Time evolution of droplet surface shape perturbation for explosive boiling of a water droplet: (a) a � 0:05;
n � 2; 4; 6; (b) n � 2; a � 0:025; 0.05; 0.1. a1, n are de®ned in Eq. (35) and a � rv=r:
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However, returning to our main objective, stability of explosive boiling, the results of this
section suggest, at least as a ®rst step in studying the problem, to ignore the outer evaporation
from the droplet surface when analyzing the stability of a liquid droplet boiling explosively, as
R never tends to zero in the full problem where an internal vapor bubble is produced.
To illustrate the time evolution of the perturbation amplitude a1�t�, we calculated it for

explosive boiling of a water droplet of a diameter of one mm. The relevant physical properties
of water at the superheat limit are as follows (Shusser, 1997): density r � 665 kg/m3, surface
tension s � 0:0128 N/m, evaporative mass ¯ux J � 99:3 kg/(m2s). (Shepherd and Sturtevant,
1982, p. 393) observed that for evaporation into a bubble the vapor density during explosive
boiling can be as high as 35% of the liquid density. Though in an uncon®ned ¯ow the vapor
density would not be so high, we considered relatively high values of vapor to liquid density
ratio a:
Fig. 2(a) shows the time dependence of the normalized perturbation amplitude a1�t�=a1�0� for

a � 0:05 and three wave numbers n � 2, 4, 6. In Fig. 2b we plotted a1�t�=a1�0� for n � 2 and
a � 0:025, 0.05, 0.1. One sees that the decay is faster for higher wave numbers and when vapor
and liquid densities are closer in value �a41�, as can also be seen from Eq. (43).
De®ning characteristic times for the basic ¯ow tR and for the perturbation ta as the leading

order terms in R= _R and a1=�da1=dt�, one obtains that tR � R0r=J and ta � 4tR=�2b� 3�: This
means that ta is at least twice as small as tR, i.e. the perturbations do have enough time to

Fig. 3. A thin expanding liquid shell.
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decay during the droplet evaporation. For given density ratio a, tR is smaller for larger values
of n, in accordance with the already mentioned fact of faster decay of higher wave numbers.
Direct comparison of the stability results for large wave numbers with the stability

conditions for plane evaporating surfaces is limited by the time dependence of the droplet
radius R�t�, which causes changes in the droplet surface curvature, and by the fact that for
large n the ¯ow in the vapor phase will be approximately irrotational, as can be seen from Eq.
(31)±(33). The latter is probably related to the observation of (Prosperetti and Plesset, 1984, p.
1601) that in the stable case, which for plane surfaces corresponds to large wave numbers,
there is no vorticity in the vapor. Nevertheless, with certain limitations one can do the
comparison and show that the stability condition is the same in both the cases. The details are
provided in Appendix B.
It is interesting to compare our results for evaporating droplets and the results for expanding

spherical ¯ames (Istratov and Librovich, 1969) with those for spherical bubbles (Birkho�,
1954, 1956; Plesset, 1954). In the latter case, there is no ¯ow through the bubble surface and
therefore the perturbed ¯ow remains irrotational.
One sees from the comparison that the results are opposite. The growing bubble �R41� is

stable and the collapsing bubble �R40� is unstable. On the other hand, the expanding ¯ame
�R41� is unstable and evaporating droplets �R40), as we have just shown, are stable.

3. Stability of a thin expanding spherical shell

3.1. Statement of the problem

Consider a thin spherical liquid shell of density r and surface tension s expanding in a gas
medium as shown in Fig. 3. The shell is characterized by its mean geometric radius R�t� and its
thickness h�t�: This model describes the late stage of explosive boiling.
The instability of an expanding liquid shell is stronger for boiling in a gas. This results from

the large di�erence in density between liquid and gas, which facilitates the motions of shell
segments. Therefore, we analyze this case.
We assume that:

1. The shell is thin relative to its radius �h� R);
2. The unperturbed (base) solution is spherically symmetric;
3. The liquid is inviscid and incompressible;
4. The ¯ows in the outer gas and internal vapor bubble are negligible;
5. Evaporation from the outer surface of the droplet is negligible;
6. The pressure in the host gas p1 and the inner bubble pi is constant and uniform.

Assumption 1 corresponds to later stages of explosive boiling. Assumptions 2 and 3 were
discussed in Section 2.1. Assumption 4 follows the analysis of explosive boiling of Shusser and
Weihs (1999). Assumption 5 is justi®ed by the results of Section 2.
Assumption 6 corresponds to the existence of very weak evaporation into the inner bubble.
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Because it is weak, one can neglect its in¯uence on the shell mass and the stability, but due to
the low density of the vapor it is su�cient to support constant pressure within the bubble.
We utilize the assumption of a thin shell by neglecting quantities of orderh2=R2 both in the

base solution and in the perturbed ¯ow.

3.2. Base solution

Let 4pM be the mass of the shell. Then from the conservation of mass

4pM � 4phR2r

�
1� h2

12R2

�
�49�

and after neglecting the second-order quantities

hR2 � M

r
� const �50�

To this approximation the ¯ow-®eld in the shell is (the dot denotes a time derivative)

v � R2

r2
_R �51�

Then from the unsteady Bernoulli equation of hydrodynamics (Lamb, 1932) and the boundary
conditions at both surfaces, one obtains in the linear approximation the equation for the shell radius

�R� 4s
M

Rÿ �pi ÿ p1�
M

R2 � 0 �52�

This equation that remains valid evenwhen pi and p1 are time dependent, does not include a _R term.
This means that there is no damping term in the equation and therefore thin shell oscillations do not
decay or amplify in the linear approximation.
Integrating Eq. (52), we obtain for the expanding shell

_R �
���������������������������������
2

3
bR3 ÿ aR2 � c

r
�53�

where

a � 4s
M

; b � pi ÿ p1
M

�54�

and c is de®ned by initial conditions. For the contracting shell, one has to change the sign of
the right-hand side of Eq. (53).
The expression within the radical in Eq. (53) must be positive. This can be considered as a

condition on the shell radius R for sustaining a thin shell.
Eq. (53) can also be integrated to obtain an implicit expression for R�t�
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t �
�R
R0

dR���������������������������������
2

3
bR3 ÿ aR2 � c

r �55�

Here R0 � R�0�: The integral in Eq. (55) can be expressed as an elliptic function

R � e3 � e1 ÿ e3

sn2

(
t

���������������������
b

6
�e1 ÿ e3�

r
;

���������������
e2 ÿ e3
e1 ÿ e3

r ) �56�

where e1, e2, e3 are the zeros of the equation

4z3 ÿ 6a

b
z2 � 6c

b
� 0 �57�

To illustrate the behavior of the solutions, we plotted them in Fig. 4 in terms of x � bR=a as a
function of t � t

���
a
p

for di�erent values of C � cb2=a3: Both initially expanding and initially
contracting shells are considered.
One sees that due to the shell becoming thinner while the pressure di�erence pi ÿ p1 is

constant, the shell expansion rate always increases. Such a behavior is prone to instabilities,
which is indeed the case, as we shall see later.
It should be noted that for very large values of the shell radius R the assumption of the

constant pressure inside the shell would no longer be valid. On the other hand, the in¯uence of
the pressure change on the shell stability will be limited, as we shall show later (see discussion
after Eq. (81)).

3.3. Shell thickness perturbations

We perturb the base solution so that the shell radius and the shell thickness are now R�t� �
Z�t; y; j� and h�t� � x�t; y j�: The perturbations are small and therefore Z� R and x� h and
the terms of order O�Z2� and O�x2� are negligible.
The perturbed shell is situated between two slightly perturbed spheres. Their equations are

r � R3
h

2
� Z3

x
2

�58�

From conservation of mass

4pM � r�V2 ÿ V1� �59�
where V1 and V2 are the volumes of the inner and outer perturbed spheres, respectively. To
linear approximation
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V1 � 4

3
p

�
Rÿ h

2

�3

�
�
Rÿ h

2

�2� 2p

0

�p
0

�
Zÿ x

2

�
dydj �60�

V2 � 4

3
p

�
R� h

2

�3

�
�
R� h

2

�2� 2p

0

�p
0

�
Z� x

2

�
dy dj �61�

Substituting Eqs. (50), (60) and (61) into Eq. (59) we obtain� 2p

0

�p
0

��
R2 � h2

4

�
x� 2RhZ

�
dy dj � 0 �62�

One can conclude that there exist two types of perturbations (see Fig. 3). Utilizing the
assumption of a thin shell, we neglect the h2 term in Eq. (62) though the decomposition into

Fig. 4. Expansion of a thin liquid shell: 1 Ð initially contracting, C � ÿ5; 2 Ð initially contracting, C � 0; 3 Ð
initially expanding, C � ÿ50; 3 Ð initially expanding, C � 100: x � bR=a, t � t

���
a
p

, C � cb 2=a3; a, b, c are de®ned
in Eqs. (53) and (54).

M. Shusser, D. Weihs / International Journal of Multiphase Flow 27 (2001) 299±345314



two types of perturbations remains valid for any h=R: If the perturbation of the radius Z is not
identically zero then

x � ÿ2h
R
Z �63�

The perturbations of the shell radius are analogous to the antisymmetric (sinuous)
perturbations observed in plane liquid ®lms (Squire, 1953) or annular liquid jets (Meyer and
Weihs, 1987). For spherical ¯ows, they also cause perturbations of the shell thickness, given by
Eq. (63).
It is possible to perturb the thickness leaving the shell radius unchanged provided the shell

volume does not change, i.e., if� 2p

0

�p
0

x dy dj � 0 �64�

This type of perturbation is analogous to the symmetric (varicose) perturbations for the plane
®lm (Squire, 1953). Any perturbation can be represented as a linear combination of symmetric
and antisymmetric ones. Therefore, each type of perturbation can be analyzed separately. We
begin the analysis for the antisymmetric case.

3.4. Antisymmetric perturbations

The perturbation potential is a solution of the Laplace equation and therefore the full
potential of the perturbed ¯ow F is given by

F � ÿR
2 _R

r
�
�
a1�t�
rn�1
� a2�t�rn

�
Ym

n �y; j� �65�

Assuming for the perturbation Z a solution of the form

Z � a3�t�Ym
n �y; j� �66�

we ®nd the functions a1�t�, a2�t�, a3�t� from the boundary conditions, which are two kinematic
boundary conditions (Lamb, 1932, p. 7)

vr � _R

�
1ÿ h

R

�
� @Z
@t

�
1ÿ h

R

�
� 3h _R

R2
Z, r � R� Z� h

2

�
1ÿ 2Z

R

�
�67�

vr � _R

�
1� h

R

�
� @Z
@t

�
1� h

R

�
ÿ 3h _R

R2
Z, r � R� Zÿ h

2

�
1ÿ 2Z

R

�
�68�

and the conservation of momentum
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p1 ÿ pi
r

� s
r
�L1 � L2� �

�
@F
@t
� v2r

2

�
j
r�R�Zÿh

2

�
1ÿ2Z

R

� ÿ �@F
@t
� v2r

2

�
j
r�R�Z�h2

�
1ÿ2ZR

� �69�

Here vr is the radial component of the velocity and L1, L2 are curvatures of the inner and
outer surfaces, respectively. The condition (69) has been obtained by combining the
conservation equations for the normal component of momentum at the inner and outer
interfaces, so the pressure in the liquid can be eliminated.
From Eqs. (67)±(69) the following system of equations is obtained

da3
dt
� 2 _R

R
a3 � ~a2 ÿ ~a1 �70�

�n� 1�
2

~a2 � n

2
~a1 � 0 �71�

R
d

dt
� ~a1 ÿ ~a2� ÿ 2 _R� ~a1 ÿ ~a2� � 2a3

R

�
2R �Rÿ 3 _R

2 ÿ s
r
�nÿ 1��nÿ 2�

h

�
� 0 �72�

Here

~a1 �
�n� 1�a1�t�

Rn�2 ; ~a2 � na2�t�Rnÿ1 �73�

Eliminating ~a1 and ~a2 one obtains

d2a3
dt2
�
�
a�nÿ 1��n� 2�

2
ÿ 2 �R

�
a3 � 0 �74�

where the constant a is de®ned in Eq. (54).
Taking the unperturbed radius R as an independent variable and using Eqs. (52)±(53), we

retrieve�
2

3
bR3 ÿ aR2 � c

�
d2a3
dR2
� �bR2 ÿ aR�da3

dR
�
�
a
ÿ
n2 � n� 2

�
2

ÿ 2bR

�
a3 � 0 �75�

We are interested in the behavior of the solution for t41, i.e. R41: Therefore we neglect
the term of order Rÿ2 assuming

2

3
bR3 ÿ aR2 � c12

3
bR3 ÿ aR2 �76�

Then after taking new variables

x � 3a

2bR
; y � a3

x 2
�77�
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the hypergeometric equation (Whittaker and Watson, 1927) is obtained

x�xÿ 1� d
2y

dx 2
� ��a� b� 1�xÿ g

�dy

dx
� aby � 0 �78�

Here

a � 2�
�����������������������
n2 � n� 2

2

s
; b � 2ÿ

�����������������������
n2 � n� 2

2

s
; g � 9

2
�79�

Hence the amplitude of the shell radius perturbation a3 is

a3 � 1

R2

24
C1F

0@
2�

�����������������������
n2 � n� 2

2

s
; 2ÿ

�����������������������
n2 � n� 2

2

s
;
9

2
;
3a

2bR

1A

� C2R
7=2F

0@ÿ 3

2
�

�����������������������
n2 � n� 2

2

s
; ÿ 3

2
ÿ

�����������������������
n2 � n� 2

2

s
; ÿ 5

2
;
3a

2bR

1A35
�80�

where F is the hypergeometric series (Whittaker and Watson, 1927).
Therefore when R41

a3
R

0C1

R3
� C2R

1=2 �81�

For stability a3=R must remain bounded. Therefore, one of the solutions is always unstable
and the conclusion is that the expansion of a thin liquid shell is unstable for antisymmetric
perturbations. It can be noted that the instability is relatively weak, growing as R1=2:
We now see that the in¯uence of pressure variations inside the shell on the perturbations is

limited because 3a=2bR is small for large R and hence F11:
As in the previous section, one can de®ne characteristic times for the base ¯ow tR and the

perturbations ta as the leading order terms in R= _R and a3=�da3=dt�, i.e. tR �
�������������
3=�2a�p

and ta �
2tR=3: One sees that these times are close and therefore despite fast increase of the shell radius
the perturbations have enough time to grow and destabilize the process.

3.5. Second-order approximation of the base solution

Symmetric perturbations are perturbations of the shell thickness. The ®rst-order
approximation in h=R corresponds to a plane layer, rather than a shell. Therefore, in analyzing
stability of symmetric perturbations we must retain the terms of order O�h2=R2� in the base
solution.
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Repeating the calculations of Section 3.2 including the O�h2=R2� terms we obtain the shell
thickness h and the ¯ow potential F are now

h � M

rR2

 
1ÿ M2

12r2R6

!
�82�

F � ÿR
2

r
_R

�
1ÿ 3h2

4R2

�
�83�

Instead of Eq. (52) the equation for the shell radius is 
1ÿ M2

12r2R6

!
�R� 4s

M
R

 
1� M2

4r2R6

!
ÿ �pi ÿ p1�

M
R2 � 0 �84�

Integrating once

_R �
��������������������������������������������������������������������������������������������
2c-a

�
R2 � F1�R� ÿ F2�R�

�
� 2

3
b
�
R3 � F3�R�

�r
�85�

where a, b, c are de®ned as in Section 3.2 and

F1�R� � 2

3

�����
m

3
3

r
ln

 
R2 ÿ

�����
m

3
3

r !2

R4 � R2

�����
m

3
3

r
� 3

�������
m2

9

r �86�

F2�R� � 4

3

���
3

6
p ����

m3
p

arctg

 
2R2���
36
p ����

m3
p � 1���

3
p

!
�87�

F3�R� � 1

2

�����
m

3

r
ln

R3 ÿ
�����
m

3

r
R3 �

�����
m

3

r �88�

m � M2

4r2
�89�

The radius R�t� can be calculated implicitly
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t �
�R
R0

dR������������������������������������������������������������������������������������������������
2cÿ a

�
R2 � F1�R� ÿ F2�R�

�
� 2

3
b
�
R3 � F3�R�

�r �90�

To verify the in¯uence of the second order correction on the base ¯ow, we plotted the solution
for both initially contracting (Fig. 5(a)) and initially expanding (Fig. 5(b)) shells. The
calculations were made for C � 0 and di�erent values of m � mb6=a6: First-order
approximation corresponds to m � 0:
One sees from Fig. 5(a) that larger values of m cause prolongation of the contracting phase

but they are of lesser importance for the expanding phase. For the initially expanding shell
(Fig. 5(b)), fast growth of x makes the second-order correction very small. We see from
Fig. 5(b) that m should be very large to have any in¯uence on the solution. One can conclude
that for thin expanding shells, which correspond to small values of m, the second-order
correction to the base solution is completely negligible though it is important for the analysis
of perturbations, as we shall see later.

3.6. Symmetric perturbations

Proceeding as in Section 3.4 we look for a solution for the thickness perturbation x of the
form

x � a3�t�Ym
n �y; j� �91�

with the potential in the perturbed ¯ow

F � ÿR
2

r
_R

�
1ÿ 3h2

4R2

�
�
�
a1�t�
rn�1
� a2�t�rn

�
Ym

n �y; j� �92�

Instead of Eqs. (67)±(69) the boundary conditions are now

vr � _R�
_h� _x
2

, r � R� h� x
2

�93�

vr � _Rÿ
ÿ

_h� _x
�

2
, r � Rÿ �h� x�

2
�94�

p1 ÿ pi
r

� s
r
�L1 � L2� �

�
@F
@t
� v2r

2

�
j
r�Rÿ�h�x�2

ÿ
�
@F
@t
� v2r

2

�
j
r�R��h�x�2

�95�

and the equations for the amplitudes are

da3
dt
� 2 _R

R

�
1� 3h2

4R2

�
a3 � h

2R

��n� 2� ~a1 � �nÿ 1� ~a2
�

�96�
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Fig. 5. Second-order approximation for expansion of a thin liquid shell: (a) initially contracting; (b) initially
expanding. x � bR=a, t � t

���
a
p

, m �M 2b6=�4r 2a6�; a, b are de®ned in Eq. (54).

M. Shusser, D. Weihs / International Journal of Multiphase Flow 27 (2001) 299±345320



3h _R

R2
a3 �

�
1� �n� 2��n� 3�

8

h2

R2

�
~a1 ÿ

�
1� �nÿ 1��nÿ 2�

8

h2

R2

�
~a2 �97�

�
�Rÿ s

r
�nÿ 1��n� 2�h

R3

�
a3 � h

2

�
d

dt
� ~a1 ÿ ~a2� ÿ 2 _R

R
� ~a1 ÿ ~a2�

�
�98�

where ~a1, ~a2 are still de®ned by Eq. (73).
We see from Eqs. (96)±(98) that the second-order terms in the base ¯ow are signi®cant.

Neglecting the second-order terms and substituting Eq. (97) in Eq. (98), we obtain that the
thickness perturbation a3 vanishes identically.
Taking R as an independent variable and eliminating ~a1, ~a2 we obtain

d2a3
dR2
� P�R�da3

dR
�Q�R�a3 � 0 �99�

where

P�R� �
�R

_R
2
ÿ 6

R
�100�

Q�R� �
�R

_R
2

�
2R

h2
ÿ 1

R

�
� 6

R2
ÿ 2s

r
�nÿ 1��n� 2�

_R
2
R2h

�101�

From the leading terms of P�R�, Q�R� for R su�ciently large

Q > 0;
dQ

dR
� 2PQ < 0 �102�

and therefore (Birkho�, 1956) each solution of Eq. (99) tends to in®nity when R41:
To ®nd the behavior of the solution for R41, we substitute in Eq. (99) the ®rst terms in

the asymptotic expansions of P and Q for large R

d2a3
dR2
ÿ 9

2R

da3
dR
� 3R4

4m
a3 � 0 �103�

After taking

x � R3���������
12m
p ; y � a3

R11=4
�104�

a Bessel equation is retrieved

d2y

dx 2
� 1

x

dy

dx
�
�
1ÿ 121

144x 2

�
y � 0 �105�

M. Shusser, D. Weihs / International Journal of Multiphase Flow 27 (2001) 299±345 321



Hence the general solution of Eq. (103) is

a3 � R11=4

"
C1J11=12

 
R3���������
12m
p

!
� C2Y11=12

 
R3���������
12m
p

!#
�106�

Comparing the behavior of the shell thickness h and the amplitude of its perturbation a3 one
sees that when R41 and h40

a3
h

0hÿ13=8ÿÿÿ4
h40
1 �107�

That is, there is strong instability for all wave numbers.
The characteristic time of the base ¯ow tR remains the same in the second-order

approximation due to negligible in¯uence of the second-order correction on the base ¯ow. For
the perturbations, the characteristic time de®ned as previously now equals 0:8tR: We see that
characteristic times for both types of perturbations are close.

3.7. Discussion

We obtained that both perturbations of the shell radius (antisymmetric) and perturbations of
the shell thickness (symmetric) are unstable. When the shell radius R tends to in®nity and the
shell thickness h tends to zero, the appropriate perturbations normalized by R or h,
respectively, are asymptotic to

����
R
p

and hÿ13=8:
Squire (1953) has shown that for thin ®lm stability both types of perturbations are unstable.

In variance with our solution, however, in the plane case antisymmetric perturbations grow
much faster than symmetric ones. For a spherical shell, we obtained weak instability for
perturbations of the shell radius and strong instability for those of the thickness. The reason
for this discrepancy lies in di�erent velocity direction in the two cases. In Squire's problem the
velocity was along the ®lm (Kelvin±Helmholtz instability), while in our case the liquid shell
accelerates normal to itself (Rayleigh±Taylor instability) (Drazin and Reid, 1981, pp. 14±22).
The fact that both shell radius and shell thickness are time-dependent in our spherical case

does not change the general conclusion about stability but changes its nature because the most
dangerous perturbations are now of a di�erent type. The weak instability obtained for the
antisymmetric perturbations may tie in with the related process of gas bubble growth with a
constant pressure inside the bubble, which is stable (Birkho�, 1954, 1956; Plesset, 1954; Plesset
and Mitchell, 1956).
Growing instabilities of an expanding spherical shell will ®nally cause its rupture and

fragmentation, as has been observed experimentally for explosive boiling (Hill and Sturtevant,
1990) and explosive exsolution within liquids (Mader et al., 1994; Mader et al., 1997). The
mechanism for fragmentation, though not fully understood, is thought to be wall thinning due
to hydrodynamic instabilities (Mader et al., 1996, p. 5558). Hence, one can expect the
symmetric perturbations to lead to fragmentation sooner than the axisymmetric ones.
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The goal of this section was to identify the most unstable perturbations for stability of
explosive boiling. These are the symmetric (varicose) perturbations.

4. Stability of explosive boiling

4.1. Physical situation

The physical situation is depicted in Fig. 6. A vapor bubble of radius R1�t� grows within a
highly superheated liquid droplet of radius R2�t�, which is situated in liquid or gas medium.
For simplicity, we assume that the bubble is situated in the center of the droplet. Though an
approximation, this assumption was shown to be reasonable for a broad range of physical
situations (Shusser and Weihs, 1999).

Fig. 6. Explosive boiling of a liquid droplet.
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As in Section 2.1 we assume that all the ¯uids are inviscid and incompressible and the
evaporation rate is constant and is not in¯uenced by the perturbations. We also neglect the
¯ow inside the vapor bubble (see Section 3.1). Utilizing the results of the previous sections we
neglect the e�ects of possible evaporation from the outer surface of the droplet (Section 2) and
consider only symmetric perturbations (Section 3).
An analysis equivalent to that in Section 2 shows that constant rate of evaporation results in

constant rate of growth of the bubble radius (Shepherd and Sturtevant, 1982). Denoting this
constant rate U, we write

R1 � Ut �108�

and using conservation of mass

R2

R0
�
"
1� �1ÿ a�

�
Ut

R0

�3
#1=3

�109�

Here R0 is the initial radius of the droplet; a � rv=r; r, rv are the densities of the droplet
liquid and the vapor, respectively.
Under these conditions the ¯ow-®eld in the main ¯ow is

Vr1 � 0 �110�

Vr2 � Vr3 �
�1ÿ a�U 3t2

r2
�111�

where the indices 1, 2, 3 correspond to the vapor bubble, the liquid droplet and the host ¯uid,
respectively.
Using the Bernoulli equation one can calculate the pressure ®eld

P1 � G�t� � �1ÿ a��3ÿ a�rU 2

2
� 2s

R1
�112�

P2 � G�t� � 2�1ÿ a�rU 3t

r

�
1ÿ �1ÿ a�

4

U 3t3

r3

�
�113�

P3 � p1 � 2�1ÿ a�r1U 3t

r

�
1ÿ �1ÿ a�

4

U 3t3

r3

�
�114�

Here p1 is the pressure far from the droplet; r1 is the density of the host ¯uid; s is the surface
tension of the droplet liquid and G�t� is a function of time.
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4.2. Perturbations and boundary conditions

We add small symmetric perturbations e�y; j; t� �e� R1, R2� to both interfaces so their
equations are now

r1 � R1�t� � e�y; j; t� �115�

r2 � R2�t� ÿ e�y; j; t� �116�
From conservation of mass� 2p

0

�p
0

e�y; j; t� sin y dy dj � 0 �117�

Distortion of the droplet shape causes perturbations of the velocity v 0ri , v
0
yi , v

0
ji

and the pressure
p 0i (i = 1, 2, 3 for the vapor bubble, the liquid droplet and the host ¯uid, respectively). These
perturbations satisfy the boundary conditions at the surface of the bubble and the surface of
the droplet.
We write the conditions of conservation of mass, conservation of the tangential components

of momentum and constancy of the evaporation rate at the surface of the unperturbed bubble
r � R1 as

v 0r1 �
@e
@t

�118�

v 0r2 � e
@Vr2

@r
� @e
@t

�119�

v 0y1 � v 0y2 �
1

R1

@e
@y

Vr2 �120�

v 0j1
� v 0j2

� 1

R1sin y
@e
@j

Vr2 �121�

The kinematic conditions at the surface of the unperturbed droplet r � R2 are

v 0r2 �
@e
@t
� e

@Vr2

@r
�122�

v 0r3 �
@e
@t
� e

@Vr3

@r
�123�

As in Section 3, conservation of the normal component of momentum at r � R1 and at r � R2
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results in the dynamic boundary condition�
p 03 ÿ e

@P3

@r

�
jr�R2
ÿ p 01jr�R1

� s
�
L1 � L2 ÿ 2

R1
ÿ 2

R2

�

�
�
p 02 ÿ e

@P2

@r

�
jr�R2
ÿ
�
p 02 � e

@P2

@r

�
jr�R1

�124�

4.3. Perturbed ¯ow

Recalling that the perturbed ¯ow in the liquid droplet and in the host ¯uid is irrotational,
and choosing appropriate solutions of the Laplace equation for the perturbation potential, we
obtain

v 0r3 � ÿ
�n� 1�f3
rn�2

Ym
n �125�

v 0y3 �
f3
rn�2

@Ym
n

@y
�126�

v 0j3
� f3

rn�2
1

sin y
@Ym

n

@j
�127�

p 03 � ÿ
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rn�1

�
_f3 ÿ
�n� 1��1ÿ a�R2

1
_R1f3

r3

�
Ym

n �128�
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nf2r

nÿ1 ÿ �n� 1�g2
rn�2

�
Ym

n �129�

v 0y2 �
�
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�
@Ym
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�130�
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�
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�
1
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@Ym
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�131�

p 02 � ÿr
"
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rn�1
�
�
nf2r

nÿ1 ÿ �n� 1�g2
rn�2

��1ÿ a�R2
1

_R1

r2

#
Ym

n �P�t� �132�

where P�t� is a function of time.
The perturbed ¯ow within the vapor bubble will be rotational, because vorticity is created
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when the ¯uid ¯ows through the distorted bubble surface (Section 2.4). Again following
Landau (1944) and Istratov and Librovich (1969) and using the assumption of the absence of
¯ow within the bubble in the base solution, one can write the pressure perturbation as a
solution of the Laplace equation, of the form

p 01 � f�t�rnYm
n �133�

Integrating the linearized Euler equation, we obtain

v 0r1 �
 
ÿ nf1�t�rnÿ1

rv

� g1�r�
!
Ym

n �134�

v 0y1 �
 
ÿ f1�t�rnÿ1

rv

� Ĝ2�r�
!
@Ym

n

@y
�135�

v 0j1
�
 
ÿ f1�t�rnÿ1

rv

� Ĝ3�r�
!

1

sin y
@Ym

n

@j
�136�

Substituting (134)±(136) into the continuity equation one obtains

Ĝ2 � 1

n�n� 1�
�
r
dg1
dr
� 2g1

�
�137�

Ĝ3 � Ĝ2 �138�
That is, the perturbed ¯ow-®eld inside the vapor bubble depends on two unknown functions
f1�t� and g1�r�:
Finally, we write the perturbation e as, using Eq. (117)

e�y; j; t� � f4�t�Ym
n �y; j� �n6�0� �139�

4.4. The perturbation equations

By substituting Eqs. (125)±(136) into the boundary conditions Eqs. (118)±(124) the following
equations are obtained

df4
dt
� ~g1 ÿ ~f1 �140�

df4
dt
� 2�1ÿ a� _R1

R1
f4 � n ~f2 ÿ �n� 1� ~g2 �141�
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R1

_R1

d ~g1
dt
� 2 ~g1 � n�n� 1�

 
~f2 � ~g2 �

�1ÿ a� _R1

R1
f4

!
� �n� 1� ~f1 �142�

df4
dt
� 2�1ÿ a� _R1R

2
1

R3
2

f4 � ÿnR
nÿ1
2

Rnÿ1
1

~f2 �
�n� 1�Rn�2

1

Rn�2
2

~g2 �143�

df4
dt
� 2�1ÿ a� _R1R

2
1

R3
2

f4 � ~f3 �144�

d ~f2
dt

R1

�
1ÿ Rn

2

Rn
1

�
� ~f2 _R1

"
ÿ �nÿ 1�

�
1ÿ Rn

2

Rn
1

�
� n�1ÿ a�

 
1ÿ Rnÿ3

2

Rnÿ3
1

!#

� d ~g2
dt

R1

 
1ÿ Rn�1

1

Rn�1
2

!
� ~g2 _R1

"
�n� 2�

 
1ÿ Rn�1

1

Rn�1
2

!
ÿ �n� 1��1ÿ a�

 
1ÿ Rn�4

1

Rn�4
2

!#

� f4

8<:�1ÿ a�
R1

24�R1
�R1 � 2 _R

2

1

� 
1� �1ÿ b�R2

1

R2
2

!
ÿ 2�1ÿ a� _R

2

1

 
1� �1ÿ b�R5

1

R5
2

!35

ÿ �n�n� 1� ÿ 2
�s
r

�
1

R2
1

ÿ 1

R2
2

�9=;� b
n� 1

 
d ~f3
dt

R2 �
�1ÿ a� _R1R

2
1

R2
2

~f3

!

� a
n

�
d ~f1
dt

R1 ÿ �nÿ 1� _R1
~f1

�
=0

�145�

Here b � r1=r and

~f1 �
nf1R

nÿ1
1

rv
; ~g1 � g1

�
R�t��; ~f2 � f2R

nÿ1
1 ; ~g2 �

g2

Rn�2
1

; ~f3 �
�n� 1�f3
Rn�2

2

�146�

Eliminating the other functions, we obtain the equation for the amplitude of the shape
perturbation f4

A�t�d
2f4

dt2
� B�t�df4

dt
� C�t�f4 � 0 �147�

The functions A�t�, B�t�, C�t� are written out in Appendix C.
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4.5. Stability analysis

We start by de®ning the conditions for stability. The process of explosive boiling occurs
during a ®nite time until the droplet evaporates completely, i.e., until

t � tf � R0

Ua1=3
�148�

We propose to analyze the stability by investigating the behavior of the solution of Eq. (147)
when t4tf : Our method is based on the assumption that for 0 < t < tf the perturbation
remains su�ciently small for the linear approximation to be possible. Therefore, it can prove
only instability of the process. On the other hand, the physical situation at the limit t4tf
closely resembles the base ¯ow of Section 3 and therefore instability is probable.
Taking a new variable

t � tf ÿ t �149�
we see that

R1 � R0

a1=3

�
1ÿ Ua1=3

R0
t

�
�150�

We are interested in the limit t40, so one can neglect the second-order terms in t

R2 � R0

a1=3
ÿ �1ÿ a�Ut �151�

One sees that in the linear approximation

R2 ÿ R1 � aUt �152�
and hence concludes that for stability the shape perturbation e must tend to zero at least as
O�t�:
From Appendix C

A�t� �
�

b
n� 1

ÿ a
n

�
R0

a1=3
�Ut

�
a
n
ÿ �1ÿ a�b

n� 1

�
� O�t2� �153�

B�t� � ÿ 2R0

na1=3t
�U

�
2ÿ �n� 4�a

n
ÿ 3�1ÿ a�b

n� 1

�
� O�t� �154�

C�t� � ÿ4�1ÿ a�U
nt

� �1ÿ a�a4=3U 2

R0

�
n� 2ÿ 2

n�2n� 1� ÿ
2�nÿ 1�b
n� 1

�
� O�t� �155�

and taking new variables

M. Shusser, D. Weihs / International Journal of Multiphase Flow 27 (2001) 299±345 329



x � Ua1=3

R0
t; y � a1=3

R0
f4 �156�

one can write the approximate form of Eq. (147) as

x�a1x� a2� d
2y

dx 2
� �b1x� b2�dy

dx
� �c1x� c2�y � 0 �157�

where

a1 � a
n
ÿ b

n� 1
� ab

n� 1
; a2 � b

n� 1
ÿ a

n
�158�

b1 � 2ÿ �n� 4�a
n

ÿ 3�1ÿ a�b
n� 1

; b2 � ÿ2
n

�159�

c1 � a�1ÿ a�
�
n� 2ÿ 2

n�2n� 1� ÿ
2�nÿ 1�b
n� 1

�
; c2 � ÿ4

�1ÿ a�
n

�160�

where n 6�0 due to conservation of mass.
Before analyzing the solutions of Eq. (157) it should be noted that the coe�cients Eqs.

(158)±(160) depend on the density ratios a and b: It is clear that small changes in a or b can
change the solution behavior only slightly. Hence, one can exclude certain speci®c values of
these quantities, which would cause di�culties in the analysis. We thus assume that a2 6�0 and
that b2=a2 is not equal to any positive or negative integer.
No general analytic solutions for Eq. (157) are known. Therefore, we study the behavior of

the solution when x40 using the method of FroÈ benius (Kamke, 1944). Substituting in Eq.
(157)

y � x p

 
1�

X1
k�1

qkx
k

!
�161�

one obtains two possible solutions

p � 0 �162�

q1 � ÿc2
b2

�163�

qk�1 � ÿ
ÿ
qkÿ1c1 � qk

�
k
�
a1�kÿ 1� � b1

�
� c2

	�
�k� 1��ka2 � b2� , k � 1, 2, 3, . . . �164�

and
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p � 1ÿ b2
a2

�165�

q1 � �b1a2 ÿ b2a1��a2 ÿ b2� � c2a
2
2

a2
2 �b2 ÿ 2a2�

�166�

qk�1 �
qkÿ1c1a2

2 � qk

n��k� 1�a2 ÿ b2
��
b1a2 � a1�ka2 ÿ b2�

�� c2a
2
2

o
�k� 1��b2 ÿ �k� 2�a2

�
a2
2

,

k � 1, 2, 3, . . .

�167�

The assumptions we made guarantee the solutions' existence for each k. Therefore when k40

y10x
1ÿ
b2
a2 �168�

y2 � O�1� �169�
Returning to physical variables, we can write for these solutions

e
R2 ÿ R1

0�tf ÿ t�
2�n�1�

bnÿa�n�1� �170�

e
R2 ÿ R1

0 1

�tf ÿ t� �171�

Thus, there exist two solutions Eqs. (170) and (171) for symmetric perturbations of the process
of explosive boiling of a liquid droplet. The stability of the former depends on the ratio of the
densities of the vapor and the host ¯uid a=b: For low density of the host ¯uid �a > b� the
solution Eq. (170) is also unstable and grows faster than Eq. (171). When b > a only low wave
numbers are unstable in Eq. (170). For high density of the host liquid, the solution Eq. (170) is
stable. That means that the droplet breakup is easier in the gas medium than in the liquid,
which is a physically reasonable result.
On the other hand, the solution Eq. (171) is always unstable. One can therefore conclude

that the process of the explosive boiling of a liquid droplet is unstable.

5. Conclusions

Two related problems dealing with the stability of explosive boiling of a liquid droplet were
considered. Evaporation of a highly superheated droplet is shown to be stable and we studied
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the stability of a thin expanding liquid shell. The results of the former problem can be also
applied to contracting spherical ¯ames while investigation of the latter may throw some light
on the process of droplet breakup at the ®nal stages of the boiling.
The results of these related problems were used to justify the assumptions necessary in

studying the general case of explosive boiling stability. It was found that the process is unstable
as observed in the experiments of Shepherd and Sturtevant (1982). The instability was obtained
for all wave numbers which again is consistent with the observation of (Shepherd and
Sturtevant, 1982, p. 388) that the roughening of the bubble surface occurs on many length
scales.
Finally, it should be mentioned that though the theory has been developed for the problem

of explosive boiling, the results of Sections 3 and 4 may be more generally applicable to
situations in which gaseous bubbles grow internally within liquid shells (e.g., due to chemical
reactions or exsolution of gases from a liquid).
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Appendix A. Estimation of the drop surface temperature perturbations

The goal of this appendix is to justify the assumption of absence of the in¯uence of droplet
surface temperature perturbations on the evaporation rate of a highly superheated liquid
droplet made in Section 2.1. We shall now calculate the droplet surface temperature and its
perturbation and show that the latter can be neglected.
We start by calculating the droplet surface temperature itself. By calculating the change, we

can show that the assumption of constant surface temperature was indeed reasonable.
Due to absence of the ¯ow within the droplet in the unperturbed solution, the temperature

®eld inside the droplet T�r, t� is governed by the following equation and initial and boundary
conditions:

@T

@t
� D

r2
@

@r

�
r2
@T

@r

�
, �A:1�

t � 0 T � T0, �A:2�

r � 0 T is finite, �A:3�
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r � R�t� @T

@r
� ÿLJ

k
: �A:4�

Here D is the thermal di�usivity, L is the latent heat of evaporation, k is the heat conductivity
and T0 is the initial temperature of the droplet, which is close to the superheat limit.
Taking a new variable

y � R2

r
ÿ R, �A:5�

one obtains

@T

@t
�
�
2R

r
ÿ 1

�
_R
@T

@y
� D

R4

r4
@ 2T

@y2
, �A:6�

t � 0 T � T0, �A:7�

y � 0
@T

@y
� LJ

k
, �A:8�

y41 T is finite: �A:9�
Following Plesset and Zwick (1952), we assume that the temperature variations are appreciable
only in a thin thermal boundary layer adjacent to the droplet surface. Then in the zero-order
approximation �r1R�

@T

@t
� _R

@T

@y
� D

@ 2T

@y2
: �A:10�

De®ning

Y � Tÿ T0, �A:11�
and using

_R � ÿJ
r
, �A:12�

we obtain

@Y
@t
ÿ J

r
@Y
@y
� D

@ 2Y
@y2

, �A:13�

t � 0 Y � 0, �A:14�
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y � 0
@Y
@y
� LJ

k
, �A:15�

y41 Y is finite: �A:16�

Eq. (A.13) with the conditions Eqs. (A.14)±(A.16) can be solved by using Laplace
transformation. We de®ne

v �
�1
0

eÿstY dt: �A:17�

Substituting in Eqs. (A.13)±(A.16), one obtains

d2v

dy2
� J

rD
dv

dy
ÿ sv

D
� 0, �A:18�

y � 0
dv

dy
� LJ

ks
, �A:19�

y41 v is finite: �A:20�

The solution of Eq. (A.18)±(A.20) is

v � ÿLJ
ks

e
ÿ

J

2rD
y

e

ÿy

����������������������
J 2

4r2D2
�
s

D

s
0@ J

2rD
�

�������������������������
J 2

4r2D2
� s

D

s 1A : �A:21�

Writing the right-hand side of Eq. (A.21) as a sum of partial fractions and using the tables and
properties of Laplace transformation (Carslow and Jaeger, 1959, pp. 298±301, 494±496), one
can show that Eq. (A.21) corresponds to the following solution for the unsteady temperature
®eld inside the droplet
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T � T0 � LJ

k

266641

2

�
y� J

r
t� rD

J

�
erfc

0B@y� J

r
t

2
������
Dt
p

1CAÿ rD
2J

e
ÿ

J

rD
y

erfc

0B@yÿ J

r
t

2
������
Dt
p

1CA

ÿ
�������
Dt

p

r
e
ÿ

�
y� J

r
t

�2

4Dt

37775: �A:22�

Then the surface temperature Ts is

Ts � T0 ÿ L

c
� LJ

k

264� J

2r
t� rD

J

�
erfc

 
J

2r

�����
t

D

r !
ÿ

�������
Dt

p

r
e
ÿ

J 2t

4r2D

375: �A:23�

Here c is the speci®c heat of the droplet liquid.
As time increases, the expression in the square brackets in (A.23) tends to zero very fast. For

example, for a butane droplet (see Shepherd and Sturtevant, 1982; Shusser, 1997; Shusser and
Weihs, 1999 for the relevant properties of superheated butane) the characteristic time for the
surface temperature change 4r2D=J 2 is about 2.6 ms, while the evaporation of a droplet with a
diameter of 1 mm will take about 1390 ms. Therefore, with a good accuracy one can
approximate the surface temperature by its value for t41:

Ts � T0 ÿ L

c
: �A:24�

For a butane droplet, the superheat limit T0=378 K, the speci®c heat c � 2390 J/(kg K) and
the heat of evaporation (corrected for the use of the heat of superheating in the evaporation)
L � 1:34� 105 J/kg. Then Ts= 322 K. The boiling temperature of butane at the atmospheric
pressure is 272.7 K. One sees that the droplet remains highly superheated during the
evaporation and therefore the in¯uence of surface temperature change on the evaporation is
limited.
Indeed, in the linear approximation the evaporation rate change DJ will be

DJ � ÿ @J
@T

L

c
: �A:25�

If one uses the Hertz±Knudsen equation for the evaporation rate (Prosperetti and Plesset,
1984, pp. 1591±1592), then in a reasonable approximation

@J

@T
� J

2T0
: �A:26�
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Therefore

DJ
J
� ÿ L

2T0c
: �A:27�

Calculating the right-hand side of Eq. (A.27), one obtains a change of 7.4% in the evaporation
rate. In reality, the change will probably be even smaller, as can be obtained from more
accurate calculation of evaporation rate based on kinetic theory analysis (Ytrehus, 1997;
Shusser et al., 2000). This result justi®es the assumption of constant evaporation rate in the
unperturbed ¯ow.
We now proceed to estimate droplet surface temperature perturbations. Writing the

temperature as a sum of its base value T and its perturbation T 0 and linearizing, one obtains
the following equation for T 0:

@T 0

@t
� v 0rÿ

@T

@r
� Dr 2T 0: �A:28�

We approximate the radial component of velocity perturbation in the liquid phase v 0rÿ as some
average value that we shall write as

v 0rÿ1d
J

r
, �A:29�

where J=r is the characteristic velocity of the base ¯ow and d� 1:
Then we can look for the solution for the temperature perturbation T 0 as a function of only

r and t

@T 0

@t
� D

r2
@

@r

�
r2
@T 0

@r

�
ÿ dJ

r
@T

@r
, �A:30�

t � 0 T 0 � 0, �A:31�

r � 0 T 0 is finite, �A:32�

r � R�t� @T 0

@r
� ÿLJ

0

k
, �A:33�

where J 0 is evaporation rate perturbation.
In the linear approximation

J 0 � @J

@T
T 0: �A:34�

Then taking the variable Eq. (A.5), we obtain
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@T 0

@t
�
�
2R

r
ÿ 1

�
_R
@T 0

@y
� D

R4

r4
@ 2T 0

@y2
� dJ

r
@T

@y
, �A:35�

t � 0 T 0 � 0, �A:36�

y � 0
@T 0

@y
� hT 0, �A:37�

y41 T 0 is finite,

where _R is given by Eq. (A.12) and h � L
k
@J
@T :

We have shown that the base solution T�r, t� reaches its limit value for t41 very fast.
Therefore, we approximate@T@y as its limit for t41: Using Eq. (A.22) one can show that

lim
t41

@T

@y
� LJ

k
e
ÿ

J

rD
y

: �A:39�

Therefore assuming again a thin thermal boundary layer, we can state the following unsteady
heat conduction problem for the temperature perturbation ®eld inside the droplet

@T 0

@t
ÿ J

r
@T 0

@y
� D

@ 2T 0

@y2
�Qe

ÿ
J

rD
y

, �A:40�

t � 0 T 0 � 0, �A:41�

y � 0
@T 0

@y
� hT 0, �A:42�

y41 T 0 is finite, �A:43�
where Q � dLJ 2

kr :
Using the Laplace transformation

v 0 �
�1
0

eÿstT 0 dt: �A:44�

We obtain the following transformed problem

d2v 0

dy2
� J

rD
dv 0

dy
ÿ sv 0

D
� ÿ Q

sD
e
ÿ

J

rD
y

, �A:45�
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y � 0
dv 0

dy
� hv 0, �A:46�

y41 v 0 is finite: �A:47�

The solution of Eqs. (A.45)±(A.47) is

v 0 � Q

s2
e
ÿ

J

rD
y

266666664
1ÿ

�
h� J

rD

�
e

J
2rDy

e

ÿy

����������������������
J 2

4r2D2
�
s

D

s
0@ J

2rD
�

�������������������������
J 2

4r2D2
� s

D

s
� h

1A

377777775
: �A:48�

Following the same method as for the unperturbed problem, it is possible after a rather
lengthy computation to invert the transformation to obtain the following solution of Eqs.
(A.40)±(A.43)

T 0 � Qte
ÿ J
rDy � rQ

�
h� J

rD

�

�

8>><>>:
�������
Dt

p

r
eÿ

�
y� J

r t

� 2

4Dt

h�J� rDh� ÿ
1

2Jh2

�
1� h

�
y� J

r
t

��
erfc

 
y

2
������
Dt
p � J

2r

�����
t

D

r !

� r2D2

2J�J� rDh�2
�
1�

�
J

rD
� h

��
yÿ J

r
t

��
e
ÿ J
rDy

erfc

 
y

2
������
Dt
p ÿ J

2r

�����
t

D

r !

� �J� 2rDh�
2h2�J� rDh�2 e

hy�
�

J
rD�h

�
hDt

erfc

 
y

2
������
Dt
p �

�
J

2r
� hD

� �����
t

D

r !9>>=>>;:

�A:49�

Then the surface temperature T 0s will be
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T 0s �
r2DQ

J�J� rDh� � rQ
�
h� J

rD

�

�

8>><>>:
�������
Dt

p

r
e
ÿ

J 2

4r2D
t

h�J� rDh� ÿ
"

r2D2

2J�J� rDh�2 �
1

2Jh2
ÿ J

2rh�J� rDh�t
#

erfc

 
J

2r

�����
t

D

r !

� �J� 2rDh�
2h2�J� rDh�2 e

�
J

rD
�h
�
hDt

erfc

 �
J

2r
� hD

� �����
t

D

r !9>>=>>;:

�A:50�

As in the base problem, the characteristic time of the temperature change is much smaller than
the time of the droplet evaporation and it is therefore possible to approximate T 0s by its limit
value for t41: Substituting the expression for Q, we obtain

T 0s � d
L

c

J

J� rDh
: �A:51�

We have obtained previously (Eq. (A.24)) that the change in the base surface temperature DTs

is

DTs � L

c
: �A:52�

Therefore

T 0s
DTs

� d
J

J� rDh
� 1: �A:53�

One sees that the surface temperature perturbation is much smaller than any surface
temperature change in the base ¯ow. We have shown that the in¯uence of the latter on the
evaporation rate can be neglected with reasonable accuracy. Therefore, the in¯uence of the
surface temperature perturbation on the evaporation rate is completely negligible.

Appendix B. Stability of a highly superheated liquid droplet for large wave numbers

Comparison of our stability results with those for plane evaporating surfaces for large wave
numbers n is limited by two factors. First, for an evaporating droplet, the surface curvature
changes with time, as the droplet radius R decreases due to evaporation. Next, neglecting the
terms of order 1=n2 makes the ¯ow in the vapor irrotational, as can be seen from Eqs. (31)±
(33). We will therefore compare our results with the analysis of the plane case only for
irrotational vapor motion (Prosperetti and Plesset, 1984, p. 1600) and assume constant droplet
radius R. The latter is possible, as for n41 the characteristic time of the perturbations is
much smaller than that of the base ¯ow (see Section 2.5).
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Using the stability analysis of (Prosperetti and Plesset, 1984, p. 1600), one can retrieve that
for irrotational ¯ow in the vapor, steady temperature ®eld in the base ¯ow, low vapor density
�rv � r� and no gravitation, the evaporation of a plane liquid surface is unstable if

k <
J 2

ars
: �B:1�

Here k is the wave number for plane surface perturbations.
We now consider the evolution of the amplitude of the spherical liquid surface perturbation

a1�t�, which is governed by Eq. (41). Assuming nr1 and a� 1, one can write it as

R

n

d2a1
dt2
� 3

da1
dt
�
�
srn2

J 2R
ÿ n

a

�
a1
R
� 0: �B:2�

Here t � Jt=r:
Relating the perturbation wave numbers for the plane and the spherical cases, one can show

that

n � kR: �B:3�
Substituting in Eq. (B.2)

d2a1
dt2
� 3k

da1
dt
� k2

�
srk
J 2
ÿ 1

a

�
a1 � 0: �B:4�

Seeking the solution as

a1 � elt, �B:5�
we obtain two solutions

l1 � 3k

2

24ÿ 1ÿ
������������������������������������
1� 4

9

�
1

a
ÿ srk

J 2

�s 35, �B:6�

l2 � 3k

2

24ÿ 1�
������������������������������������
1� 4

9

�
1

a
ÿ srk

J 2

�s 35, �B:7�

They have a positive real part only when

k <
J 2

ars
: �B:8�

Thus, we have obtained the same instability criteria for both plane Eq. (B.1) and spherical Eq.
(B.8) cases.
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Appendix C

The coe�cients in Eq. (147) are
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